Expression of a minus-end-directed motor protein induces Sf9 cells to form axon-like processes with uniform microtubule polarity orientation.

نویسندگان

  • D J Sharp
  • R Kuriyama
  • R Essner
  • P W Baas
چکیده

Neurons extend two types of processes with distinct morphologies and patterns of microtubule polarity orientation. Axons are thin cylindrical processes containing microtubules that are uniformly oriented with their plus-ends-distal to the cell body while dendrites are stout tapering processes that contain nonuniformly oriented microtubules. We have proposed that these distinct microtubule patterns are established by molecular motors that transport microtubules into each type of process with the appropriate orientation. To test the feasibility of this proposal, we have embarked on a series of studies involving the expression of vertebrate motors in insect Sf9 cells. We previously focused on a kinesin-related protein termed CHO1/MKLP1, which localizes to the midzone of the mitotic spindle, and which has been shown to have the appropriate properties to transport microtubules of opposite orientation relative to one another. Expression of a fragment of CHO1/MKLP1 containing its motor domain induces Sf9 cells to extend processes with a stout tapering morphology and a nonuniform microtubule polarity pattern similar to dendrites. Here we focus on a minus-end-directed kinesin-related motor protein termed CHO2, which localizes to the non-overlapping regions of the mitotic spindle, and which has been shown to have the appropriate properties to transport microtubules with plus-ends-leading. Sf9 cells induced to express a fragment of CHO2 containing its motor domain extend processes with a long cylindrical morphology and a uniformly plus-end-distal microtubule polarity pattern similar to axons. These results show that motor proteins have the capacity to organize distinct patterns of microtubule polarity orientation during process outgrowth, and that these patterns are intimately related to the unique morphological characteristics of the processes. Moreover, mutation of three amino acids corresponding to the ATP binding site necessary for motor function suppresses the capacity of the CHO2 fragment to induce process formation and microtubule reorganization, indicating that at least in the case of CHO2, the transport properties of the motor are essential for it to elicit these effects.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Expression of a kinesin-related motor protein induces Sf9 cells to form dendrite-like processes with nonuniform microtubule polarity orientation.

The microtubules (MTs) within neuronal processes are highly organized with regard to their polarity and yet are not attached to any detectable nucleating structure. Axonal MTs are uniformly oriented with their plus ends distal to the cell body, whereas dendritic MTs are of both orientations. Here, we sought to test the capacity of motor-driven MT transport to organize distinct MT patterns durin...

متن کامل

Rearrangement of microtubule polarity orientation during conversion of dendrites to axons in cultured pyramidal neurons.

Axons and dendrites of neurons differ in the polarity orientation of their microtubules. Whereas the polarity orientation of microtubules in axons is uniform, with all plus ends distal, that in dendrites is nonuniform. The mechanisms responsible for establishment and maintenance of microtubule polarity orientation in neuronal processes remain unclear, however. We previously described a culture ...

متن کامل

Depletion of a microtubule-associated motor protein induces the loss of dendritic identity.

Dendrites are short stout tapering processes that are rich in ribosomes and Golgi elements, whereas axons are long thin processes of uniform diameter that are deficient in these organelles. It has been hypothesized that the unique morphological and compositional features of axons and dendrites result from their distinct patterns of microtubule polarity orientation. The microtubules within axons...

متن کامل

Processes induced by tau expression in Sf9 cells have an axon-like microtubule organization

We have indirectly analyzed the role of tau in generating the highly organized microtubule (MT) array of the axon. Axons contain MT arrays of uniform polarity orientation, plus ends distal to the cell body (Heidemann, S. R., J. M. Landers, and M. A. Hamborg. 1981. J. Cell Biol. 91:661-673). Surprisingly, these MTs do not radiate from a single discrete nucleating structure in the cell body (Shar...

متن کامل

Interplay between kinesin-1 and cortical dynein during axonal outgrowth and microtubule organization in Drosophila neurons

In this study, we investigated how microtubule motors organize microtubules in Drosophila neurons. We showed that, during the initial stages of axon outgrowth, microtubules display mixed polarity and minus-end-out microtubules push the tip of the axon, consistent with kinesin-1 driving outgrowth by sliding antiparallel microtubules. At later stages, the microtubule orientation in the axon switc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of cell science

دوره 110 ( Pt 19)  شماره 

صفحات  -

تاریخ انتشار 1997